

Radar Strategy for SPLASH and Synergy with SAIL

Rob Cifelli¹ and V. Chandrasekar²

¹ NOAA Physical Sciences Laboratory

² Cooperative Institute for Research in the Atmosphere (CIRA) and Colorado State University

SPLASH Science (Contributions from Scanning Radar Observations)

Clouds and Precipitation:

Quantitative Precipitation Estimation (QPE)

Snow level and drivers

Precipitation

Microphysics

Convective Initiation

Rain-on-snow events

Surface Properties:

- Snow cover
- Sublimation of surface snow
- Surface Albedo
- Soil Moisture
- Surface-atmosphere exchange and impact on hydrology

Mountain Weather:

- Orographic flows
- Diurnal circulations for renewable energy
- Boundary layer development

Improving Prediction:

- Seasonal evolution of snowpack in the NWM
 - NWM forcing, including precipitation
- Seasonal streamflow biases
- Soil moisture variability
- Improving convective initiation with DA
- UFS-NWM coupling
 UFS/RRFS evaluation
 Can-filling radars

What processes contribute to precipitation in the East River Valley and surrounding terrain?

From Lee et al. 200

How much precipitation falls in the East River watershed?

Blended QPE Approach for SPLASH: liquid

Radar Rainfall Estimation in Low Melting Layer

• The X-Band only QPE is blending of R-KDP and R-Z (with VPR correction applied)

SPLASH Snow QPE Approach

- Liquid QPE in orographic terrain is hard
- Solid QPE in orographic terrain is way harder
 - variable density
- For SPLASH use disdrometer data to retrieve density $\rho_s = \frac{3\rho_0 v^2 C_D}{4gD}$
 - Follow approach of Yu et al 2020
- QPE approach: $S(K_{dp}, Z_H) = A*K_{dp}^B*Z_H^C$
- Explore other approaches as well

Critical Ancillary Measurements for QPE

SPLASH/ SAIL radar deployment overview

General Information

• Old Teocalli Low Site:

Latitude: 38.898367 °N.

Longitude: 106.9432056 °W

Altitude: 3141 m

• Old Teocalli High Site:

Latitude: 38.897934 °N.

Longitude: 106.9432083 °W

Altitude: 3145 m

• RMBL:

Latitude: 38.9585639 °N.

Longitude: 106.987761 °W

Altitude: 2898 m

RMBL: Rocky Mountain Biological Lab (38°57'30.83"N, 106°59'15.94"W, 2898 m)

Common for all sites: 10 km radius

Old Teocalli Lift: Ray Profile

Radar Tower Height: 25 ft, Azimuth: 330°

(a) Low Site

Red line: RMBL: 7.74 km, 330°

Cartoon of two radar observations with terrain in between

Radar height: 12 ft

Elevation: 0°, 1.0°, 2.0°, 4.0°, 6.0°, 8.0°, 10.0°, 12.0°

Azimuth: 338°

Radar Visibility with vegetation (40km radius)

Radar Tower Height: 12 ft, Elevation: 0°, 1.0°, 2.0°, 4.0°, 6.0°, 8.0°, 10.0°, 12.0°

Radar Visibility with Tree height (40km radius), Summer Season

Radar Tower Height: 12 ft, Elevation: 0°, 1.0°, 2.0°, 4.0°, 6.0°, 8.0°, 10.0°, 12.0°

Radar Visibility with Tree height (40km radius), Winter Season

Radar Tower Height: 12 ft, Elevation: 0°, 1.0°, 2.0°, 4.0°, 6.0°, 8.0°, 10.0°, 12.0°

SPLASH Radar, 12 ft, Elevation: 6°

Kilometers

SAIL Radar, 12 ft, Elevation: 12°

Radar Tower Height: SPLASH radar (12 ft), SAIL radar (20 ft)

Elevation: SPLASH 3°, 4°, 5°, 6.0°, SAIL: 15°, 18°, 30°

